Первый важный вопрос на который мы хотим ответить зачем? Зачем нам важно в этом разбираться? Где мы можем применить эти знания, и где в нашей повседневной жизни мы сталкиваемся с цифровой обработкой сигналов (ЦОС)?
Для ответа на этот вопрос далеко ходить не придется, достаточно взять свой смартфон. Это устройство проигрывает аудио и видео, обрабатывает фото, передает и принимает информацию по сети, оценивает собственное положение в пространстве, сканирует отпечаток пальца или профиля пользователя, и все это достижимо за счет цифровой обработки сигналов.
Примеров из повседневной жизни множество, современные медицинские устройства не обходятся без ЦОС:
- Умные транспортные средства обрабатывают сигнал из множества датчиков и самостоятельно оценивают дорожную обстановку;
- Радарные станции контролируют взлет и посадку самолетов на аэродромах;
- Телекоммуникации и системы глобального позиционирования, все опирается на алгоритм ЦОС.
Проще говоря, Цифровая Обработка Сигналов сегодня окружает нас повсюду и от нее зависит наш комфорт и безопасность.
Что такое сигнал
Сигнал — это физический процесс, несущий в себе информацию. Если мы получаем информацию из какого-то физического процесса, то для нас он становятся сигналом.
Рассмотрим примеры:
График изменения температуры в районе международного аэропорта «Логан» в течение одного месяца. На первом графике по оси x отложены время, по оси y градусы, это одномерный сигнал или запись электрокардиограммы. На втором графике, одномерный сигнал, изменение напряжения на электродах во времени.
Но сигналы могут изменяться в пространстве. К примеру, изображение. Оно отражает изменение цвета и освещенности в пространстве. Если мы рассматриваем цифровое изображение, то оно обычно состоит из пикселей.
Значение яркости отдельных пикселей изменяются в пространстве. Каждую строчку пикселей можно рассматривать как отдельный, одномерный сигнал. Здесь ключевое слово рассматривать, то как мы рассматриваем или представляем сигнал очень важно. Для обработки мы используем определенный математический аппарат. Что такое значение яркости пикселя одной строки? Это набор чисел над которой можно осуществлять, например арифметические операции, или их можно отразить на графике отложив по оси x положение пикселей в пространстве.
Сложив несколько строк мы получаем матрицу, изображение часто представляется именно в виде численных матриц, и это представление по сути, математическая модель сигнала то, над чем мы можем оперировать.
Представили изображение виде матрицы и мы можем применять линейную алгебру, или например можем описать сигнал формулой и определить его значение, подставив параметры в любой момент времени. Математическое описание для рассматриваемого физического процесса мы выбираем в зависимости от решаемой задачи и от доступной нам математики.
Обработка сигналов
Обработка сигналов — это выполнение действий над сигналом для изменения его характеристик или получения информации. Подобное действие раньше осуществлялись без использования компьютеров и микросхемы.
Рассмотрим типичный пример усиления аналогового электрического сигнала. Аналоговые электрические цепи состоят из транзисторов, резисторов, конденсаторов и так далее. На картинке ниже представлен усилительный каскад, он позволяет из сигнала малой амплитуды получить сигнал большей амплитуды, происходит изменение характеристик сигнала, то есть его обработка.
Цепи детектора фазы и частоты могут помочь нам оценить характеристики электрического сигнала, то есть получить информацию. Аналоговое цепи оперируют непрерывными сигналами, в то время как цифровые устройства обрабатывают дискретные отсчеты, нули и единицы.
Цифровые сигналы
Ниже на картинке пример прохождение цифрового сигнала через микросхему. По сути здесь также происходит изменение величины входного сигнала и микросхема представляет собой цифровой усилитель.
Но для чего нам вообще использовать цифровые сигналы и устройства?
Цифровые сигналы, впервые стали использоваться в системах связи, так как они были более устойчивы к шумам и помехам, и здесь можно провести аналогию с азбукой морзе. Вы наверное помните, как в фильмах, когда система связи перестает работать, герой вспоминает про азбуку морзе и начинают нажимать tangent, передавая точки и тире, такой простейший сигнал доходит в самых трудных условиях.
Нули и единицы цифрового сигнала, те же самые точки и тире. Ими можно закодировать любую информацию, также как мы кодируем буквы в азбуке морзе.
Аналоговый сигнал
Аналоговый сигнал несет информацию к примеру, в значение свои амплитуды, и нам важно знать точное значение для того чтобы получить сообщение без ошибок. У цифрового сигнала только два значения амплитуды большое или маленькое, единица или ноль.
При передаче сигнала накладывается шум и в случае с аналоговым сигналом этот шум может сильно исказить значение амплитуды, в то время как в цифровом, мы по-прежнему сможем понять где ноль, а где единица, и декодировать сообщение без ошибок.
Развитие цифровой связи привело к развитию цифровой вычислительной техники, и в итоге, сейчас мы имеем программируемые цифровые вычислители, которые присутствуют практически в каждом устройстве. Но и аналоговая обработка никуда не делась, современные устройства также зачастую содержит себе аналоговые цепи наряду с цифровыми.
Цифровая обработка сигналов — это способ обработки сигналов на основе численных методов с использованием цифровой вычислительной техники.
На картинке ниже обобщенная схема системы ЦОС. Она описывает общий случай обработки физического, то есть аналогового сигнала цифровым вычислителем. На входе и выходе системы обработки непрерывный аналоговый сигнал, который проходит через специальное устройство аналого-цифровой преобразователь (АЦП), и после этого в виде последовательности нулей и единиц попадает на цифровой вычислитель. Выходная последовательность преобразуется обратно в аналоговую форму цифро-аналоговым преобразователем.
В принципе ЦОС может осуществляться над изначально цифровым сигналом и преобразование в аналоговую форму не требуется.