Основы цифровой обработки сигналов

Сигнал это изменение физической величины во времени или пространстве. К примеру, это может быть изменение одномерного сигнала в зависимости от времени. Если мы рассматриваем цифровое изображение это может быть изменение яркости пикселей в зависимости от его положения в пространстве.

Что такое сигнал ЦОС

Но с точки зрения математики сигнал это функция одной или нескольких независимых переменных. В нашем случае независимыми переменными являются время и положение в пространстве, а зависимыми переменными могут быть значения нашего сигнала x от t или яркости пикселей на цифровом изображении.

Непрерывные и дискретные сигналы:

Непрерывный аналоговый сигнал определен на всем промежутке времени, то есть мы в любой момент времени t можем узнать значение сигнала x. Если мы возьмем эти значения с периодом дискретизации T, то мы получаем дискретный сигнал, значение которого определены только в конкретные моменты времени.

Непрерывный аналоговый сигнал

Дискретный сигнал теперь записываем как x[n], и n это номера отчетов дискретной последовательности. Если взглянуть на процесс дискретизации с точки зрения математики, то выходная дискретная последовательность с x[n] формируется, когда мы подставляем в нашу функцию x(t) значение времени t равный nT, где n — это номер дискретного отчета, а T — это период дискретизации.

Периодические сигналы

Периодический сигнал это сигнал, форма которого повторяется во времени. Повторяться во времени может, как форма непрерывных сигналов, так и форма дискретных сигналов. Периодом сигнала называем интервал повторения.

К примеру, у дискретного сигнала y[n] форма повторяется каждые 4, 8, 12 и так далее отчетов, для непрерывного сигнала z[t] форма повторяется каждые 2, 4, 6 и так далее секунд.

Периодические сигналы

Фундаментальным или основным периодом сигналом называется наименьший интервал повторения, то есть для нашего дискретного сигнала y[n] это 4 отчета, а для нашего непрерывно сигнала это две секунды.

Фундаментальная частота

От понятие фундаментального периода мы можем перейти к понятию фундаментальной частоты. Фундаментальная или основная частота также именуемая первая гармоника, это количество основных периода сигнала, приходящихся на единицу времени. Частота измеряется в Герцах, то есть в количестве периодов приходящейся на одну секунду, и фактически является обратной величиной основного периода.

Фундаментальная частота сигнала

Если мы рассмотрим наш непрерывный сигнал z[t] его основной период равен двум секундам, а это значит, что на одну секунду приходится ровно половина его периода.

Основная частота дискретного сигнала

Но если с непрерывным сигналом все более менее понятно, то есть можем взглянуть на него на временной оси, оценить величины основного периода и подсчитать значение основной частоты, то с дискретным сигналом все не так просто.

непрерывный и дискретный сигнал

Нам доступны значение отчетов, мы знаем их номера в последовательности, но мы не знаем, как они соотносятся с его фундаментальной частотой, и как они соотносятся с частотой дискретизации. Давайте в этом попробуем разобраться на примере.

Возьмем дискретный сигнал, который мы используем для описания в предыдущих статьях. Он имеет период в 4 отчета, где два первых отчета в периоде имеют большую амплитуду, а два последних отчета имеют малую амплитуду.

Нашей задачи в данном примере будет при помощи такого сигнала услышать ноту ля первой октавы, то есть частоту 440 Гц. Для того чтобы это сделать нам обязательно надо понять, как основная частота соотносится с частотой дискретизации сигнала.

Пример первой гармоники дискретного сигнала

Для этого давайте перенесем наш сигнал на временную ось. Основной период данного сигнала высчитывается также, как для непрерывного сигнала, то есть это обратная величина его фундаментальной частоты, в нашем случае единицы делить на 440. Но мы также видим то, что период дискретизации нашего сигнала, обозначим здесь его как ∆t в 4 раза меньше, чем основной период, так как на основной период приходится ровно 4 отсчета.

частота дискретизации через период дискретизации

Выразим частоту дискретизации через период дискретизации, частоту дискретизации можно записать, как единицу делить на ∆t, что получить равно 4 делить на T0, то есть в нашем случае частота дискретизации должна быть в 4 раза больше, чем наша фундаментальная частота ноты ля первой октавы.

Изменение частоты дискретизации

Если мы рассмотрим наши манипуляции над дискретным сигналом, как манипуляции на аналоговом сигнале, а после этого дискретизацию аналогового сигнала, то вот к чему мы приходим. Когда мы увеличиваем частоту дискретизации, то мы фактически берем дискретные отчеты более быстрого аналогового сигнала, или кладем отчеты того же дискретного сигнала на другую временную сетку.

изменение частоты дискретизации

К примеру, наш дискретный сигнал с периодом дискретизации ∆t можно представить как оцифрованные значения аналогового сигнала с периодом Т0,

оцифрованные значения аналогового сигнала

Если теперь те же самые отчеты сигнала, мы положим на более плотную временную сетку с меньшим периодом ∆t, это фактически то же самое как если мы оцифровали более быстрый аналоговый сигнал с меньшим периодом Т0.

оцифровка сигнала

В качестве эталонного, аналогового сигнала мы представили синусоиду, а почему мы так часто используем синусоиду, когда говорим о цифровой обработки сигналов об этом в следующей статье.

Ссылка на основную публикацию