Понятие сигнала в радиосвязи — типы и параметры сигналов

В этой статье Вы узнаете что такое информация и сигнал, какие бывают сигналы, их виды, параметры. Увидите реальную спектральную плотность мощности. Что происходит с сигналом в канале связи. Познакомимся с эффектом Доплера. Узнаем больше о шумах и помехах. 

Что такое информация

Под информацией понимают совокупность сведений о каких-либо событиях, явлениях или предметах, предназначенных для передачи, приёма, обработки, преобразования, хранения.

К.Э. Шеннон, как один из основателей теории информации образно её определил так: «Информация – послание, которое уменьшает неопределённость».

Если я Вам скажу что-то, что для Вас известно, то это не будет для Вас информацией. Я если скажу, то что Вы не знали, уменьшу вашу неопределенность, то это уже будет для Вас информацией. 

Что такое сигнал

Сигнал – это некоторый физический процесс, параметры которого изменяются в соответствии с передаваемым сообщением. Пример – электрический сигнал, радиосигнал как частный случай электромагнитного сигнала, акустический сигнал, оптический и т.д. В зависимости от того, в какой среде идет распространение сигнала. Сигнал – это материальный носитель информации.

Обычно сигнал, независимо от его физической природы, представляют как некоторую функцию времени x(t). Такое представление есть общепринятая математическая абстракция физического сигнала. 

Типы сигналов

  • Детерминированный, или регулярный – это сигнал, закон изменения которого известен и известны все его параметры. 

Такой сигнал передает информацию? Информация уменьшает неопределенность. В детерминированном сигнале мы знаем все, мы знаем какой он будет через минуту, через год. Детерминированный сигнал информацию в себе никакую не несет. Например, сигнал с гетеродина, мы сами его сформировали, задали частоту, амплитуду, фазу. 

  • Квазидетерминированный — это сигнал, закон изменения которого известен, но один или несколько параметров является случайной величиной. 

Пример: x(t)=Asin(wt+j), где амплитуда А и j — случайная величина.

Например, мы знаем его частоту, но не знаем амплитуду и фазу — это квазидетерминированный сигнал, “квази”-почти, почти определенный сигнал. Информация всего вносит некоторую случайность. Если мы знаем амплитуду, частоту и фазу,значит информации там нет. Квазидетерминированный сигнал передает информацию, передача информации идет в тех параметрах, которые случайны, в нашем примере амплитуда и фаза случайные величины. Именно в этих величинах передается информация. Информация всегда несет в себе хаос, случайность. Все модулированные сигналы, ЧМ, ФМ это квазидетерминированные сигналы.       

  • Случайным называют сигнал, мгновенные значения которого не известны, а могут быть лишь предсказаны с некоторой вероятностью.

Кроме этого все сигналы могут быть непрерывными (аналоговыми) и дискретными (цифровыми или импульсными).

О случайном сигнале мы можем судить о его вероятностных характеристиках. Мы можем знать его плотность вероятности, но какое значение примет сигнал через секунду, минуту мы не знаем. Когда мы работаем со случайным сигналом, мы всегда работаем с вероятностью. 

Параметры сигналов

Какие параметры мы будем использовать? Это энергия за некоторый интервал времени T. X(t) это сам сигнал, чтобы определить энергию мы должны взять по модулю, возвести в квадрат, проинтегрировать на некотором промежутке времени и получим энергию. 

Энергия сигнала

Средняя мощность за некоторое время t. Это энергия деленная на время.

Средняя мощность сигнала формула

Мгновенная мощность, если средняя мощность измеряется на некотором участке времени, то мгновенная измеряется в один, конкретный момент времени. 

Мгновенная мощность сигнала

Средняя мощность измеряется на промежутке времени, а мгновенная в точке. 

График средней и мгновенной мощности сигнала

Спектральная плотность энергии и мощности

Спектральная плотность сигнала характеризует распределение энергии или мощности сигнала по диапазону частот.

Спектральная плотность энергии, это как у нас энергия распределяется по частотному диапазону. Вычисляется через преобразование Фурье. 

Спектральная плотность мощности

И соответственно, СПМ это, как у нас распределяется мощность по частотному диапазону. 

В формуле, модуль в квадрате это спектральная плотность энергии, поделили ее на время T и по определению, время T должно стремиться к бесконечности. Но на практике, никто не ждет бесконечности, все оценивают СПМ на некотором интервале времени. 

СПМ это некоторая функция зависящая от частоты. По шкале СПМ возьмем 10 Вт/Гц, и окрестности в 1 Гц по частоте. То в полосе 1 Гц будет заключено 10 Вт мощности. 

Спектральная плотность мощности сигнала

Есть два сигнала и представлены их спектральные плотности мощности. ВОПРОС. Мощность какого сигнала больше? 

Сигналы s1 и s2

Мы должны определить площадь под кривой, проинтегрировать. S1=2*10=20 Вт, S2=1*30=30 Вт. В первом случае S1 имеет мощность 20 Вт, а во втором 30 Вт. 

СПМ реального сигнала, отображаемая на спектральном анализаторе.

СПМ на анализаторе спектра

Современные анализаторы спектра могут считать автоматически площадь, вы включаете определение мощности, задаете частотный интервал в котором он должен измерить эту мощность и он сам вычисляет канальную мощность сигнала. 

Что происходит с сигналом в канале связи

С ним происходят ослабления, задержка, доплеровский сдвиг, шумы и тому подобное. 

Ослабление

Сигнал ослабевает за счет рассеивания в пространстве. Например, у нас есть источник радиосигнала, всенаправленный и изотропный, т.е. он во все стороны излучает одинаково. Получается сферический фронт волны. На одном расстоянии r1 и на другом r2. 

Ослабление сигнала

Пусть излучаемая мощность 100 Вт, все эти 100 ватт распределяются по всей сфере. Приемные антенны не большие, они охватывают только небольшой участок пространства. И количество мощности, проходящее через небольшой участок пространства, будет разный на расстоянии r1 и r2. Потому что плотность мощности на расстоянии r1 будет выше, чем на расстоянии r2. 

Площадь сферы равна S=4pi*R^2. И эта формула фигурирует во всех формулах оценки дальности радиосвязи. Потому что радиоволна равномерно рассеивается в пространстве. 

И помимо того, что сигнал сам ослабевает по мере распространения в пространстве, электромагнитная волна проходит через некую среду, которую пытается нагреть и за счет этого теряет свою энергию. 

Задержка распространения сигнала

Не смотря на то, что электромагнитная волна, это самое быстрое, что есть у нас во вселенной, тем не менее скорость распространения этой волны конечна. И поддается измерениям. Например, на 1 км задержка распространения  ~3.3 мкс. 

На что влияет задержка распространения? Обычно, мы точно не знаем расстояние между передатчиком до приемником с точность до микрон. И задержка распространения, которая нам неизвестна, мы не знаем расстояние и мы не знаем за какое время примем этот сигнал. И соответственно мы не знаем начальную фазу сигнала. 

Доплеровский сдвиг частоты

Приняли сигнал с частотой, который отличается от той, которую мы передали. Это дало информацию о скорости объекта. Доплеровский сдвиг частоты появляется, когда у нас либо приемник, или передатчик, двигаются относительно друг друга. Либо двигается отражающая среда, передатчик излучил, радиосигнал отразился от какого-то объекта, если этот объект тоже двигается, то возникает доплеровский сдвиг частоты. Более подробно читайте полную статью “Доплеровский сдвиг частоты”. 

Воздействие помех и шумов

И в эфире есть шумы и собственные шумы приемника. Про шумы подробнее в отдельной статье. 

Замирания сигнала

Замирания сигнала это процесс, когда у сигнала, случайным образом скачет амплитуда и фаза. То больше амплитуда, то меньше. Выделяют:

  • Быстрые замирания (интерференционное замирание) — накладывание собственных копий сигнала от переотражений с разными фазами. Вызываются многолучевым распространением сигнала. 

Когда есть источник, есть приемник, есть множество путей распространения радиоволны, одна волна может прийти прямой, другая переотраженной. 

Например, одна волна прошла 100 км, другая 101 км, к чему это приводит? Если две электромагнитные волны проделали разный путь, то фазы у этих сигналов тоже будут разные. Соответственно, если сигналы сложились в противофазе, то сигналы друг друга подавили, если сложились в фазе, то друг друга усилили. 

Сложение сигналов в противофазе

Из-за многолучевого распространения, каждый луч проделывает разное расстояние, это приводит к тому, что начальная фаза каждого луча отличается. И когда в приемнике эти сигналы складываются, они могут друг друга усиливать либо ослаблять. Это приводит к тому, что амплитуда результирующего сигнала постоянно изменяется, это и есть быстрые замирания.  

  • Медленные замирания (затенение) – возникновение препятствий на пути следования радиоволны. Если радиоволна распространяется в пространстве и встречает препятствия, причем эти препятствия то появляются, то исчезают. 

Медленные и быстрые замирания

На рисунке ниже представлен характер изменения амплитуды сигнала от времени. Сплошной линией показаны быстрые замирания, пунктирной медленные. Медленные замирания происходят из за затенения, быстрые из-за многолучевого распространения. Получается, что амплитуда постоянно скачет на десятки дБ. 

Характер медленных и быстрых замираний

Межсимвольная интерференция

Возникает из-за многолучевого распространения. 

Линейные искажения

Канал связи всегда имеет АЧХ и ФЧХ. Какие-то частоты он усиливает, какие-то ослабляет, фаза где-то поворачивается в одну сторону, где-то в другую это и есть линейные искажения. 

Если мы хотим сделать модель канала связи, то чем больше этих параметров мы учтем, тем точнее будет эта модель. 

Ссылка на основную публикацию
Adblock
detector