Описание стандартов связи 1 G и 2 G — подробный разбор архитектуры сети GSM

При пользовании мобильным телефоном, мало кто задумывается о том, как в нем происходят звонки и откуда появляется интернет. На самом деле, всё не на столько просто, как можно подумать. Существуют специализированные стандарты сотовой связи – это обобщающее обозначение для всех технологий, которые применяются при создании мобильной связи. Часть из этих стандартов схожа друг с другом. Стандарты создаются похожим путем и имеют практически одинаковые характеристики. На основании параметров все стандарты разделены по группам, называющимся поколениями. Отсюда и происходят известные всем обозначения 1G, 2G, 3G и 4G. Буква G в данном случае является сокращением от английского слова generation – поколение. Также Вы узнаете, как развивалась сотовая связь, и какие кардинальные различия существуют между ее поколениями.

GSM История возникновения стандарта

Название GSM первоначально было аббревиатурой группы, которая вела разработку этого стандарта. Позже ее значение было интерпретировано в нужном ключе и стало обозначать Глобальную систему для мобильной связи. В 1982 году стартовало создание GSM. Оно велось коалицией из 26 Европейских компаний, предоставлявших услуги связи. Цель состояла в том, чтобы объединить все европейские страны с единым стандартом связи, который будет работать на 900 мегагерц. Спустя 7 лет ETSI продолжил работу над развитием GSM. Стандарт начал полноценно работать только в середине 1991 года. При этом он наголову обходил ближайших конкурентов, таких как североамериканский PCS. После этого усовершенствование стандарта проводилось в 1993 году. После производились лишь улучшения текущей версии.

Первое поколение мобильной связи (1G)

Данное поколение использовало в своей работе аналоговые стандарты, которые внедрялись в течение 1980-х годов. Впоследствии они были заменены цифровой технологией 2G, по всем параметрам превосходившей первое поколение. Принципиальное отличие между ними – возможность пользоваться СМС и шифровать звонки: только цифровой стандарт может позволить сделать это. Всего 1G поддерживал более 10 стандартов. Самые известные из них: NMT, AMPS, TACS, C-450, RtMI. Все они использовались отдельно, в зависимости от региона применения. Скорость загрузки при использовании 1G не превышала 5,6 килобайт в секунду, что является просто смешным по сегодняшним меркам.

Характеристики аналоговых стандартов сотовой связи

Основные аналоговые сети использовали в своей работе частоты 450, 800 и 900 мегагерц. Radiocom 2000, стандарт, использовавшийся во Франции, выделяется из этого ряда: он применял диапазоны 170, 200 и 400 МГц.

Все аналоговые стандарты использовали частотную модуляцию для передачи исходных данных. Подвижная станция для работы по этим стандартам должна была иметь относительно высокую мощность — от трех до пяти ватт. Главный недостаток данных стандартов кроется в их низкой ёмкости, появляющейся из-за неполной экономичности использования выделенной полосы, работающей на частоте 12,5-30 килогерц. Это влекло за собой высокие потери эффективности и завышенное энергопотребление.

Второе поколение мобильной связи (2G)

Введение новых стандартов, которые сформировали второе поколение мобильной связи, было обусловлено невозможностью усовершенствования аналоговых стандартов в цифровой. Фактически 2G начал свою работу в Европе в 1991 году, а к 1993 году в 22 странах были уже созданы 36 сетей GSM. Японский эквивалент базовых стандартов был введен в 1994 году. При этом производилось постоянное внутреннее улучшение технологий для избавления от недочетов появившихся стандартов. Внедрение 2G способствовало существенному ускорению передачи данных и возможность общаться посредством кратких текстовых сообщений.

Цифровые стандарты сотовой связи 2-го поколения

При переходе на 2G существовало два основных стандарта для систем сотовой связи – уже упоминавшийся GSM, применявшийся на территории Европы и D-AMPS, получивший большое распространение в Северной Америке. Они разрабатывались независимо друг от друга. Историю формирования GSM вы уже знаете, остановимся на D-AMPS. Работа над его созданием началась, когда стал очевидным тот факт, что существующий аналоговый стандарт AMPS невозможно полностью заменить цифровым из-за широты его применения. Но вскоре, нашли способ создания аналого-цифровой системы, которая способна обеспечить работу обеих систем в одном и том же диапазоне частот. В 1988 году была начата работа над данным стандартом, и в 1992 году была завершена. Помимо названия D-AMPS вам может повстречаться аббревиатура IS-54, расшифровывающаяся как «промежуточный стандарт».

Устройство D-AMPS

 Переходный период (2,5G)

С течением времени развивались технологии, вместе с этим стала необходимой передача данных между пользователями сотовых телефонов с значительно большей скоростью. Впоследствии был создан GPRS – пакетный радиоприемник общего использования. GPRS является своего рода дополнением к стандарту GSM, которая позволяет использовать пакетную передачу данных в сети этого стандарта. Плата за пользование GPRS взимается за распакованный объем трафика, а не за время использования. Следующей ступенью развития GPRS стал EDGE. Аббревиатура буквально обозначает расширение возможностей для произведения эволюции GSM. Данная технология позволила существенно ускорить передачу информации. Иногда EDGE также называют стандартом поколения 2.75. К тому же, вводилась технология XRTT, которая в теории может передавать информацию со скоростью 144 килобит в секунду, но на деле этот показатель редко превышал 60. Тем не менее, данная технология все еще широко применяется, как и любая другая, использующая в своей работе зарегистрированную радиолинию.

Архитектура сети GSM

Разберем пример идеальной модели сети. На рисунке изображенном ниже представлена модель, у каждой БС есть по 6 соседей. К примеру, эти станции расположены на гладкой поверхности, без холмов, деревьев, зданий и неровностей.

Базовая станция (БС) — это приемо-передающая станция, которая взаимодействует с вашим мобильным телефоном по радиоканалу. Зона охвата БС при таких условиях представляет окружность, которые будут пересекаться между собой. Если соединим точки пересечения окружностей, то получим шестиугольники – пчелиные соты.

Соты

Сеть подразделяется на 2-е основные системы BSS (Base Station System) – подсистема базовой станции и SSS – система коммутации. Эта система включает:

Мобильная станцияОбычный смартфон, которым мы пользуемся ежедневно. Соответственно, он содержит в себе, как приемник, так и передатчик для связи с базовой станцией
Модуль определения абонента (SIM карта)Является неотъемлемой частью телефона и нужна для распознавания абонента в сети, для передачи закодированных сообщений.

Мобильная станция и сим карта

BSC – контроллер базовой станции.

Контроллер базовых станций

К его обязанностям относится:

  • Распределение радиоканалов между базовой станцией и мобильной станцией;
  • Контролирует соединение с мобильной станцией (МС);
  • Уведомление МС о поступившем вызове;
  • Контроль уровня выходной излучаемой мощности между мобильной и базовой станцией в течение разговоров абонентов.

Промежуточное звено между БС и системой коммутации является транскодер (TCE) — это оборудование, которое преобразует входные сигналы канала передачи голоса и данных из коммутационного центра в форму, соответствующую рекомендации GSM по радиоинтерфейсу.

Транскодер

Проще говоря, по проводным линиям, голос в цифровом виде отправляется со V=64 Кбит/с. Сигнал с одинаковой скоростью передаётся с выхода коммутационного центра. А уже между мобильной станции и БС речь передается со V=13 Кбит/с. Транскодер превращает 64 Кбит/с в 13.

Mobile Switching Center (MSC) переводится с английского как мобильный коммутационный центр. Коммутатор обслуживает ограниченную по территории группу сот, например в конкретном городе, и выполняет все виды соединений, нужных для работы МС.

Центр коммутации мобильной связи

Функции коммутатора:

Подключение между МС и определенными сетями электросвязи (со своего сотового телефона и коммутатора можно дозвониться до любого абонента городской сети)
Управляет вызовами, осуществляет их маршрутизацию
Отвечает за «эстафетную передачу» (хэндовер). В процессе этой функции при переходе МС из одной соты в другую осуществляется непрерывность связи
Создаёт исходные данные обязательные для выписывания счетов за оказанные услуги связи в биллинг-центр
Регистрация местоположения МС. Например, при вашем перемещении из московской области в ленинградскую, все эти передвижения регистрируются в базе данных

Home Location Register (HLR) – «домашний» регистр местоположения. Это устройство содержит информацию о местонахождении любой из мобильных станций, что позволяет коммутационному центру отправлять вызов на эту станцию.

Домашний регистр местоположения

HLR это справочная база данных (БД) о регулярно регистрируемых абонентов в сети:

  • Параметры достоверности пользователей;
  • Определенные номера;
  • Перечень оказываемых клиенту услуг связи;
  • Спец. информация о маршрутизации;
  • Оформление данных о роуминге.

Visitor Location Register (VLR) – Регистр местоположения посетителя.

Регистр местоположения пользователя

Это временная база данных абонентов, которые находятся в зоне действия конкретного коммутационного центра. Основная роль VLR заключается в минимизации количества запросов, которые MSC должны выполнять к регистру домашнего местоположения (HLR), который содержит постоянные данные, относящиеся к абонентам сотовой сети.

В идеале, должен быть только один регистр местоположения посетителя на MSC, но также возможно, чтобы один VLR обслуживал несколько MSC.

Преимущество системы — она уменьшает нагрузку на основную базу данных в «домашнем» регистре местоположений. В ней хранятся такая же информация, что и в домашнем регистре, пока абонент находится в зоне покрытия конкретного коммутационного центра.

Authentication Center (AUC) – центр аутентификации. Это функция в сети GSM, используемая для аутентификации мобильного абонента, который хочет подключиться к сети. Аутентификация осуществляется путем идентификации и проверки действительности SIM-карты.

Центр аутентификации

Как только подписчик аутентифицирован, AUC отвечает за генерацию параметров, используемых для конфиденциальности, и шифрование радиолинии. Чтобы обеспечить конфиденциальность мобильного абонента, временная идентификация мобильного абонента (TMSI) назначается на время, в течение которого абонент контролируется конкретным центром коммутации мобильной связи (MSC), связанным с AUC.

Определяет достоверность пользователя
Включает несколько блоков и создаёт ключи и алгоритмы аутентификации
Сверяются права абонента и реализуется доступ к сети связи
Центр имеет несколько уникальных номеров, индивидуальный ключ и алгоритм аутентификации клиента, которые впоследствии отправляются в коммутационный центр

Equipment Identity Register (EIR) – регистр идентификации оборудования.

Регистр идентификации оборудования

В регистре имеются специальные номера IMEI (международный идентификационный номер оборудования мобильной станции) практически на всех мобильных станциях, которые имеют доступ к конкретной сети связи.

База данных разделяется:

  • Белый список – для авторизованной МС;
  • Чёрный список попадают номера, которые были украдены, или лишенные доступа по любой другой причине;
  • Серый для МС с проблемами данных программного обеспечения.

Управляющее звено сети, которая не включена в систему коммутации, является Operation and Maintenance Center (центром эксплуатации и технического обслуживания), сокращенно ЦЭиТО.

Центром эксплуатации и технического обслуживания

Operation and Maintenance Center проверяет и распоряжается остальными компонентами сети. В появления чрезвычайной ситуации ЦЭиТО уведомит персонал, и зарегистрирует сведения об аварийной ситуации. В зависимости от степени повреждения ОМС позволяет устранить ситуацию автоматически или с вмешательством персонала.

Для создания разумного иерархического управления сетью GSM, подходит Network Management Center (NMC) – сетевой операционный центр, который:

Ответственный за использование и тех. обслуживание на всём уровне сети, при поддержке региональных центров
При ЧС, к примеру, поломка механизма или перегрузка узлов, NMC обеспечит управление трафиком в сети и диспетчерское управление сетью
Контролирует техническое состояние узлов управления, применяемых в оборудовании сети, и отображает состояние сети на мониторах для операторов центра управления сетью. Что позволяет работникам отслеживать процесс и помогать центрам эксплуатации
Персонал отвечает за мониторинг одной или нескольких сетей на предмет определенных условий, которые могут потребовать особого внимания во избежание ухудшения качества обслуживания
Организации могут управлять более чем одним NMC, либо для управления различными сетями, либо для обеспечения географической избыточности в случае недоступности одного сайта

Сетевой операционный центр

Видео о работе сети GSM

Заключение

Как можно заметить, весь процесс перехода от аналоговой связи до цифровой занял чуть больше пяти лет, после чего вновь появившиеся стандарты постепенно совершенствовались, ускоряя передачу сигнала и увеличивая его качество. На сегодняшний день развитие мобильной связи идет с гораздо большей скоростью, так как технологии создаются намного быстрее, чем 30 лет назад: тогда никто и подумать не мог о скорости передачи данных через телефон в разы выше компьютерной. На текущий момент активно ведется разработка стандартов пятого поколения, которые позволят передавать информацию с немыслимой скоростью, приближающейся к показателям в гигабайты/секунду. Но те эпохальные события, когда только началось зарождение новых поколений сотовой связи стали самым настоящим толчком к совершенствованию, импульс от которого сохраняется до сих пор.

Ссылка на основную публикацию
Adblock
detector